==================================================================================== Simple Harmonic Oscillator Celerite Kernels for Stellar Granulation and Oscillations ==================================================================================== This is the documentation for ``shocksgo``. The goal of ``shocksgo`` is to generate light curves of stars accounting for the effects of granulation, super-granulation and p-mode oscillations. You can view the source code and/or contribute to ``shocksgo`` via `GitHub `_. ############# Documentation ############# .. toctree:: :maxdepth: 2 shocksgo/installation.rst shocksgo/gettingstarted.rst shocksgo/index.rst ######## Overview ######## Methods ======= We compute these light curves efficiently by taking advantage of `celerite `_, a fast Gaussian process regression package, which we use to approximate solar and stellar power spectrum densities with sums of `simple harmonic oscillator `_ (SHO) kernels of the form: .. math:: S(\omega) = \sqrt{\frac{2}{\pi}} \frac{S_0\,\omega_0^4} {(\omega^2-{\omega_0}^2)^2 + {\omega_0}^2\,\omega^2/Q^2} where :math:`\omega = 2\pi f` is the angular frequency. We use one SHO kernel term for super/meso-granulation, another for ordinary granulation, and about 50 terms for the comb of p-mode peaks. Scaling relations for p-modes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For computation of stellar p-mode oscillation frequencies, we use the scaling relations found in `Huber et al. (2012) `_ and references therein (e.g. `Kjeldsen & Bedding 1995 `_ ), namely Equation 4: .. math:: \nu_\textrm{max} \propto M R^{-2} T_{\rm eff}^{-1/2}, and Equation 3 .. math:: \Delta \nu_\textrm{max} \propto M^{1/2} R^{-3/2}. The amplitude scaling of the p-mode oscillations is given by Equation 9 of `Huber et al. (2011) `_: .. math:: A \propto \frac{L^s}{M^t T_\textrm{eff}^{r-1} c(T_\textrm{eff})} where :math:`r = 2`, :math:`s = 0.886`, :math:`t = 1.89` and .. math:: c(T_\textrm{eff}) = \left( \frac{T_\textrm{eff}}{5934 \textrm{K}} \right)^{0.8}. Scaling relations for granulation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For computation of large and small scale stellar surface granulation frequencies, we use the scaling relation found in `Kallinger et al. (2014) `_: .. math:: \tau_\textrm{eff} \propto \nu^{-0.89}_\textrm{max}, where :math:`\tau_\textrm{eff}` is the characteristic granulation timescale. The amplitudes of granulation scale as .. math:: a \propto \nu^{-2}_\textrm{max}. (`Kjeldsen & Bedding, 2011 `_).